
Intermediate Git

Intermediate Git
Rebase workflow & best practices

Gokul Das B

FSUG Trivandrum

Sunday 14th March, 2021

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 1 / 30

Intermediate Git | Introduction

What after Beginners’ Git?

Be friendly to explorers

Don’t surprise them!
Don’t disappoint them! (with broken builds)
Don’t frustrate them! (with experimental commits)

Make it easy to collaborate

Create a tolerable development history

Record the development history as if it’s a document
Make it progress logically
Make it browsable

Make it easy to use git tools that aid development

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 2 / 30

Intermediate Git | Introduction | Commits

Introduction

Commits

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 3 / 30

Intermediate Git | Introduction | Commits

A perspective on commits

Commits were designed to be sent as text email patches. All rules are
based on this.

A branch is a thread of emails (created with: git format-patch)

A commit is a single mail in the thread

There is usually a cover email at the head of the thread

Example (Patch Thread 1)
[PATCH 0/4] HTTPD: Add caching Sergey Ponomarev

[PATCH 1/4] httpd: Update to HTTP/1.1 Sergey Ponomarev

[PATCH 2/4] httpd: Don’t add Date header to response Sergey Ponomarev

[PATCH 3/4] httpd: Don’t add Last-Modified header to response Sergey Ponomarev

[PATCH 4/4] httpd: Support caching via ETag header Sergey Ponomarev

1From a patchset for BusyBox by Sergey Ponomarev
Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 4 / 30

http://lists.busybox.net/pipermail/busybox/2020-August/088182.html

Intermediate Git | Introduction | Commits

Cover letter

Example
From: "Sergey Ponomarev"<stokito@gmail.com>

Subject: [PATCH 0/4] HTTPD: Add caching

Date: Sat, 08 Aug 2020 22:23:30

Date and Last-Modified headers now can be disabled while there still enabled by default.

I hope in future versions they become disabled by default and later removed at all.

I checked and Cache-Control works fine in Chrome and Firefox even if Date is not present.

Last-Modified can be replaced with ETag.

Another difference with previous patch is that now ETag will be returned even in 304 response.

This is a requirement of spec and it makes sense because If-None-Match may have many ETags

but client should know which ETag matched.

You can clone the code from https://github.com/stokito/busybox/commits/caching

Sergey Ponomarev (4):

httpd: Update to HTTP/1.1

httpd: Don't add Date header to response

httpd: Don't add Last-Modified header to response

httpd: Support caching via ETag header

networking/httpd.c | 131 ++++++++++++++++++++++++++++++++++++++-------

1 file changed, 111 insertions(+), 20 deletions(-)

--

2.25.1

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 5 / 30

Intermediate Git | Introduction | Commits

Patch mail

Example
From: "Sergey Ponomarev"<stokito@gmail.com>

Subject: [PATCH 3/4] httpd: Don't add Last-Modified header to response

Date: Sat, 08 Aug 2020 22:23:33

The Last-Modified header is used for caching. The client (browser) will

send back the received date to server via If-Modified-Since request

--** SNIP **--

Signed-off-by: Sergey Ponomarev <stokito at gmail.com>

networking/httpd.c | 22 ++++++++++++++++++----

1 file changed, 18 insertions(+), 4 deletions(-)

diff --git a/networking/httpd.c b/networking/httpd.c

index 7a429d2b5..1cea33ddd 100644

--- a/networking/httpd.c

+++ b/networking/httpd.c

@@ -215,6 +215,16 @@

//config:

+//config:config FEATURE_HTTPD_LAST_MODIFIED

--** SNIP **--

+ len += sprintf(iobuf + len, "Last-Modified: %s\r\n", date_str);

+#endif

/* This should be "Transfer-Encoding", not "Content-Encoding":

--

2.25.1

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 6 / 30

Intermediate Git | Introduction | Commits

Patch mail: An explanation

1 All text lines limited to 72 characters

2 Subject line: Main commit message

Explains what the patch does, if applied (notice the imperative tone)
Limited to 50 characters due to patch tags

3 Body Main: commit message

Be descriptive. Be free with tone
Limited to 72 characters like rest of the text mail

4 Space after ‘---’ can be used for unofficial messages

Example (Commit message of example patch)
httpd: Don't add Last-Modified header to response

The Last-Modified header is used for caching. The client (browser) will

send back the received date to server via If-Modified-Since request

header. But both headers MUST be an RFC 1123 formatted string. And the

formatting consumes resources on request parsing and response

generation. Instead we can use ETag header. This simplifies logic and

the only downside is that in JavaScript the document.lastModified will

return null.

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 7 / 30

Intermediate Git | Introduction | Ideal History

Introduction

Ideal History

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 8 / 30

Intermediate Git | Introduction | Ideal History

What we want to happen

1 Every commit must work

Imagine that a clone or pull doesn’t build or work?
Each commit should be free of bugs

2 Each commit must contain all related changes

Partial changes violate rule: 1

3 Commits/changes should be in logical order

Out of order changes are confusing
git bisect is easier when changes are in order

The guidelines work well for any workflow

The guidelines are especially important for email-patch workflow

Important for master branch. Not so much for feature branches

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 9 / 30

Intermediate Git | Introduction | Ideal History

What actually happens!

Actual development workflow is never ideal

Commit as often as possible

Commit in the same order as you develop

Don’t bother with aesthetics:

Forget about logical order
Forget about combining related changes

Revert buggy commits

This will create reversion commits

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 10 / 30

Intermediate Git | Introduction | Ideal History

Reconciling contradictions

1 Create development/feature branches

2 Follow natural style in those branches

3 Edit the history of feature branch

Rebase feature branch onto master
Every commit is self-contained

4 Merge rebased branch to master

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 11 / 30

Intermediate Git | Operations | Commits

Operations

Commits

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 12 / 30

Intermediate Git | Operations | Commits

Interactive staging: Made too many changes?

Stage ‘hunks’ (blocks of changes) in related groups

Commands
Do this only for new/untracked files

git add -N <filename>

Stage changes in a file piece-by-piece

git add -p [filename]

Get a lot more options

git add -i [filename]

Patch staging (git add -p) allows you to stage, unstage, ignore or split
hunks

In case of untracked (new files), do (git add -N) first

Interactive staging (git add -i) gives you a lot more options including
patch staging. Other options are status, update, revert and diff

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 13 / 30

Intermediate Git | Operations | Commits

Commit amending: Made a mistake?

In case of mistake in last commit, amend it

Command
git add <filename>

git commit --amend

1 Modify mistakes in file

2 Stage (git add) the corrected files

Skip steps 1 & 2 if you want to just modify the commit message

3 Do: git commit --amend

4 Modify the commit message

This will overwrite the last commit with corrected content and message

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 14 / 30

Intermediate Git | Operations | Rebase Workflow

Operations

Rebase Workflow

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 15 / 30

Intermediate Git | Operations | Rebase Workflow

Rebasing: Basic idea

Before rebase

A B C master

D E current

After rebase

A B C D E

master current

Eg: git rebase master (from current branch)

This rebases changes in current branch on master branch

Rebasing works based on changesets

RULES:

1 Always use fresh branch for commits meant to be rebased

2 NEVER rebase a published branch

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 16 / 30

Intermediate Git | Operations | Rebase Workflow

Interactive rebasing: Basic idea

Edit history with:

git rebase -i master

1 A rebase plan/todo will open
automatically in a text editor

2 Edit the plan as necessary

3 Save rebase plan

4 Rebase will start, interrupting
when manual intervention is
needed

Rebase plan: Original
pick 032932a 03: Line to be edited

pick 55bdd80 04: Two lines to be split

pick 6814493 05: A buffer line

pick f643d0c 06: This commit should be combined with previous

pick 3148420 07: This commit will be deleted

pick e7b5df9 08: This commit will be switched with next one

pick 874883d 09: This commit will be switched with previous one

pick 14c6893 10: This is a placeholder commit

Rebase plan: Edited
edit 032932a 03: Line to be edited

edit 55bdd80 04: Two lines to be split

pick 6814493 05: A buffer line

squash f643d0c 06: This commit should be combined with previous

pick 874883d 09: This commit will be switched with previous one

pick e7b5df9 08: This commit will be switched with next one

pick 14c6893 10: This is a placeholder commit

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 17 / 30

Intermediate Git | Operations | Rebase Workflow

Editing commit

Do this when there is any mistake in the content or message of a commit

Rebase plan: edit
edit 032932a 03: Line to be edited

1 The rebase will be interrupted for edit

2 Modify the files that needs change

3 Stage the file: git add <filename>

4 Continue the rebase: git rebase --continue

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 18 / 30

Intermediate Git | Operations | Rebase Workflow

Splitting commit

Do this to split a commit with unrelated changes

1 The option is same as edit

2 The rebase will be interrupted for edit

3 Do a soft reset: git reset

4 Do an interactive staging for first commit: git add -p <filename>

5 Commit the partial changes: git commit

6 Stage and commit the rest of the changes

7 Continue the rebase: git rebase --continue

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 19 / 30

Intermediate Git | Operations | Rebase Workflow

Squash commit

Do this to combine commits with related partial changes

Rebase plan: squash
squash f643d0c 06: This commit should be combined with previous

1 The commit will be combined with the previous commit

2 You will be asked for an updated commit message

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 20 / 30

Intermediate Git | Operations | Rebase Workflow

Delete commit

Do this to delete mistakes and test commits

Just delete the commit line from the rebase plan

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 21 / 30

Intermediate Git | Operations | Rebase Workflow

Reorder commits

Do this when the changes are not in logical order

Rebase plan
pick 874883d 09: This commit will be switched with previous one

pick e7b5df9 08: This commit will be switched with next one

Rearrange the lines in the rebase plan as needed

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 22 / 30

Intermediate Git | Operations | Rebase Workflow

Final step

Final step is to update the target branch (master) to the current branch

1 Switch to target branch: git switch master

2 Run a fast-forward merge: git merge current

Fast-forward merge means:

Target branch (master) will update to the feature branch (current)

The history will be linear

No merge commits (no commits with multiple parents)

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 23 / 30

Intermediate Git | Operations | Email-Patch Workflow

Operations

Email-Patch Workflow

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 24 / 30

Intermediate Git | Operations | Email-Patch Workflow

Prerequisites for email-patch workflow

Git should be configured to send out emails.
Check git-send-email.io for available options.

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 25 / 30

https://git-send-email.io/#step-2

Intermediate Git | Operations | Email-Patch Workflow

Step 1: Create patchset

Command
git format-patch -o /tmp/patches --cover-letter master..current

1 Rebase the feature branch (current) on the target branch (master)

Clean up the history in the process

2 Run git format-patch command to create patch files

Each patch file has one commit in email format
-o /tmp/patches: Specifies folder to save patch files
--cover-letter: Specifies a cover letter should be created
master..current: Specifies starting and ending commits of patchset
The patchset excludes master and includes current

Revision selector, like commit hash can be used instead of branch name
-v2, -v3, etc can be used to indicate revised patchsets

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 26 / 30

Intermediate Git | Operations | Email-Patch Workflow

Step 2: Edit patchset

1 Patch files in destination folder can be edited with a regular editor

2 Edit subject and body of cover letter (if opted for)

3 Modify patch email if needed (not usually necessary)

The subject line corresponds to first line (subject) of commit message
The body of email before --- corresponds to body of commit message
Body of email after --- and before patch are non-git messages

4 Don’t edit any machine formatted part of the messages. That
includes:

Patch and version tags on subject lines
Patches/diffs in patch files
Footer area of cover letter

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 27 / 30

Intermediate Git | Operations | Email-Patch Workflow

Step 3: Send patches

Command
git send-email --to=<maintainer-email> --cc=<mailinglist-address> /tmp/patches/*.patch

All patch files will appear as threaded to the cover letter

The patches can be sent to any number of recipients, including
redundant addresses

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 28 / 30

Intermediate Git | Operations | Email-Patch Workflow

Applying email patches as maintainer

Command
git am /tmp/incoming/*.patch

This requires access to mailbox directory containing patch files

One method is to ‘pipe’ email from client (eg: mutt) through git am

This will apply the patches to current branch

It is recommended to apply patches on a fresh branch, rather than
master

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 29 / 30

Intermediate Git | Conclusion

Conclusion

Rebase workflow and email-patch workflow offer a lot of advantages
over normal workflows:

1 Higher quality commit history

2 Less frustration for readers

3 Full freedom during development

4 Resiliance in collaboration

5 Less dependence on platforms

The additional work in these workflows pay off in the way of developer
satisfaction

Gokul Das B | FSUG Trivandrum | Sunday 14th March, 2021 30 / 30

	Introduction
	Commits
	Ideal History

	Operations
	Commits
	Rebase Workflow
	Email-Patch Workflow

	Conclusion

